MA 222 - Analysis II: Measure and Integration (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem Set 2

- 1. Let $B = [0,1] \setminus \mathbb{Q}$, the set of irrationals. Given $\epsilon > 0$, construct a closed set $F \subset B$ such that $\mu^* F \ge 1 \epsilon$, equivalently $\mu^* (B \setminus F) \le \epsilon$.
- 2. Prove the following: Let μ^* be the *L*-outer measure
 - (a) μ^* is translation invariant.
 - (b) $\mu^*(A+B) = \mu^*(B)$ if $\mu^*(A) = 0$.
- 3. Recall (state) Borel- Cantelli lemma.
 - (a) Produce an example to show that the condition $\mu E_1 < \infty$ cannot be dropped.
 - (b) Also, if $\Sigma \mu E_n = \infty$ with $\mu E_n < \infty$, $\forall n$, then it is not necessarily true that $\mu(\overline{\lim} E_n) = 0$.
- 4. (a) Let $\mu^* A > 0$, $A \subset \mathbb{R}$, then show that there is a non-measurable set contained in A (Hint: you may use the non-measurable set N).
 - (b) Prove that any measurable subset E of the measurable N has outer measure 0. Is the result true for other non-measurable sets? Justify?
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ and $\{x : f(x) \ge r\}$ is measurable for all $r \in \mathbb{Q}$. Show that f is measurable.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$, and $\{x : f(x) = \alpha\}$ is measurable for all $\alpha \in \mathbb{R}$. Construct an example to show that f need not be measurable.
- 7. Let $f : [a, b] \to [-\infty, \infty]$ is measurable and f takes the values $\pm \infty$ only on a set of measure 0. Show that, for any $\epsilon > 0$, \exists an M > 0 and a set $E \subset [a, b]$ such that $\mu E \leq \epsilon$ and $|f(x)| \leq M$, for $x \in E^c = [a, b] \setminus E$.
- 8. (a) Let E_n be a sequence of measurable sets, show that $\mu(\underline{\lim}E_n) \leq \underline{\lim}\mu E_n$.
 - (b) Also prove $\mu(\overline{\lim}E_n) \leq \mu(\overline{\lim}E_n)$ if $\mu(\bigcup E_n) < +\infty$. The result need not be true if $\mu(\bigcup E_n) = +\infty$.

- 9. (a) (Generalized Cantor set): Construct a Cantor-type set $F \subset [0,1]$ by removing the middle intervals of length $\alpha/3^n$, $0 < \alpha < 1$ at the stage n. Show that F is closed, F^c is dense in [0,1] and $\mu F = 1 \alpha$ (in the standard cantor set, $\alpha = 1$).
 - (b) Prove C + C = [0, 2].
- 10. Define Lipschitz continuity. Prove $f(x) = x^{1/2}$ is Lipschitz in $[\delta, \infty)$ for any $\delta > 0$, but f is not Lipschitz in $(0, \delta)$ for any $\delta > 0$.
- 11. Let $f: E \to \mathbb{R}$ be Lipschitz and let $A \subset E$ be such that $\mu A = 0$, then show that $\mu(f(A)) = 0$.
- 12. Construct two examples (with proof) to show that the conditions in Egoroff's theorem cannot be dropped; that is
 - (a) $\mu E < \infty$ cannot be dropped.
 - (b) In general, one cannot choose $\mu A = 0$.
 - (c) Assuming Egroff's theorem is true for $f_n \to f$ everywhere on E, deduce that the theorem is true if $f_n \to f$ a.e. on E.
- 13. Let f_n be a sequence of measurable functions. Show that $\underline{\lim} f_n$ and $\overline{\lim} f_n$ are measurable. Also, if f and g are measurable, show that fg is measurable.
- 14. Let $f: E \to \mathbb{R}$ be measurable and f = g a.e. Show that g is measurable.
- 15. Prove that $f^{-1}(U)$ is measurable (respectively, \mathcal{B} measurable) for any Borel set U if f is measurable (respectively, \mathcal{B} -measurable) (Hint: may consider the class $\{U: f^{-1}(U) \text{ measurable}\}$)
- 16. Construct an example to show that $f \circ g$ need not be measurable if both f and g are measurable.